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Abstract

The paper reviews the construction of cloaks for 2D acoustic or electromagnetic waves using the
Piola transform, and shows how the transform leads to the construction of a quasi-optimal test norm for
the Discontinuous Petrov-Galerkin (DPG) method with optimal test functions for this class of problems.
Numerical experiments for cylindrical and square cloaks illustrate the discussed concepts and show that
the DPG method is effective in cloak simulations.
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1 Introduction

We begin by reviewing shortly the concept of Piola transforms lying behind the construction of parametric
finite elements forming the exact sequence (see [10], p. 34).

Piola transforms. Let x = T (ξ) be a smooth transformation of a domain Ω ⊂ IR3 onto a domainD ⊂ IR3.
The transformation defines a corresponding map between spaces H1(Ω) and H1(D),

u(x) = û(ξ) = û(T−1(x)) = (û ◦ T−1)(x) . (1.1)

The chain rule implies the corresponding transformation for gradients:

∂u

∂xi
=

∂û

∂ξk

∂ξk
∂xi

.

1Email: leszek@ices.utexas.edu. Partially supported by AFOSR under FA9550-09-1-0608.
2Email: jichun@unlv.nevada.edu, Phone: (702)895-0355. Supported by National Science Foundation grant DMS-0810896.
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If we want to preserve the exact sequence property, we need to transform the larger spaceH(curl,Ω) using
the same rule:

Ei = Êk
∂ξk
∂xi

. (1.2)

In turn, for the curl operator we have:

εijk
∂Ek
∂xj

= εijk
∂

∂xj

(
Êl
∂ξl
∂xk

)
= εijk

∂Êl
∂xj

∂ξl
∂xk

+ Êl εijk
∂2ξl

∂xk∂xj︸ ︷︷ ︸
=0

= εijk
∂Êl
∂ξm

∂ξm
∂xj

∂ξl
∂xk

, (1.3)

where εijk denotes the Rizzi symbol, i.e.,

εijk =


0 if any two of indices ijk are equal,
1 if ijk is an even permutation of 123,
−1 if ijk is an odd permutation of 123.

But,

εijk
∂ξm
∂xj

∂ξl
∂xk

= J−1εnml
∂xi
∂ξn

,

where J−1 is the inverse jacobian. Consequently, we obtain the following Piola transform for the curl
operator:

εijk
∂Ek
∂xj

= J−1 ∂xi
∂ξn

(
εnml

∂Êl
∂ξm

)
. (1.4)

This leads to the transform for theH(div,Ω)-conforming fields:

Hi = J−1 ∂xi
∂ξn

Ĥn . (1.5)

Finally,
∂Hi

∂xi
=

∂

∂xi

(
J−1 ∂xi

∂ξk

)
︸ ︷︷ ︸

=0

Ĥk + J−1 ∂xi
∂ξk

∂Ĥk

∂ξl

∂ξl
∂xi

= J−1∂Ĥk

∂ξk
, (1.6)

which establishes the transformation rule for the L2-conforming elements:

f = J−1f̂ . (1.7)

The Piola transforms set gradient into gradient, curl into curl and div into div. Consequently, any dif-
ferential operator involving the grad, curl, and div operators preserves its structure at a possible expense of
introducing an anisotropy in the “material data”. In particular, the Piola transforms preserve the Maxwell
equations and linear acoustics equations.
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2D Maxwell and acoustics equations. Consider the Maxwell equations:{
∇×E + iωµH = 0,

∇×H − iωεE = 0,
(1.8)

where E and H are the electric and magnetic fields, and ε and µ are the permittivity and permeability,
respectively. In the 2D transverse electric case, E = (E1, E2, 0) and H = (0, 0, H). Using a clockwise
rotation by 90 degrees, we transform the 2D Maxwell equations into the 2D linear acoustics equations:{

iωµp+ divu = 0

iωεu+∇p = 0,
(1.9)

where pressure p = H , and velocity u = (u1, u2) = (E2,−E1). Thus the 2D Maxwell and acoustics
problems are equivalent, and any result established for one case immediately applies to the other case as
well.

Construction of an invisible cloak for electromagnetic waves is based on introducing a singular bijective
map x = x(ξ) that maps a domain Ω − {P}, where point P ∈ Ω, onto a domain D with a hole, in such a
way that the corresponding inverse map transforms the boundary of the hole into the single point P . Specific
constructions for a cylindrical and square cloaks are discussed in the next section.

The linear acoustics equations with constant material data µ, ε in domain Ω − P , transform then into
acoustics equations in domain D with anisotropic material data: iωµ̂p̂ +∂ûk

∂ξk
= 0

iωε̂lnv̂n + ∂p̂
∂ξl

= 0,
(1.10)

where
µ̂ = µJ, ε̂ln = ε

∂xi
∂ξl

∂xi
∂ξn

J−1. (1.11)

The concept is illustrated in Fig. 1 showing the real part of pressure corresponding to a plane wave propa-
gating horizontally, and the corresponding composition of the same function with the cylindrical cloaking
map defined in Section 2. The map maps a hollow cylinder into the circular domain in such a way that the
inner circle is mapped onto the origin. The rest of the domain remains intact. As a consequence of the
construction, the plane wave remains unchanged outside of the cylinder but it is modified within its interior.
The function on the right represents the solution to 2D acoustics or Maxwell equations with anisotropic
material properties within the hollow cylinder (the cloak) implied by the singular map. The wave does not
penetrate into the cloaked region (the inner circle) and remains unchanged outside.

2 Design of cloak materials

General speaking, there are several major approaches to render objects invisible. For example, Alu and En-
gheta [2] proposed to use plasmonic coatings to cancel the dipolar scattering. But this technique is limited to
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Figure 1: Cylindrical cloak in 2D. Left: Re(p(x)), right: Re(p(ξ)) with p(x) = eiωx1 and cloaking map
x = T (ξ) from Section 2.

the sub-wavelength scale of the object, and the coating depends on the geometry and material parameters of
the object. Milton and Nicorovici [17] discovered that using a metamaterial coating would cloak polarizable
line dipoles. But the coating is affected by the objects placed inside. In 2006, Leonhardt [13] and Pendry
et al [18] independently discovered a coordinate transformation mechanism for electromagnetic cloaking.
Their mechanism was quite similar to that of Greenleaf et al [11, ?] introduced for conductivity. The main
idea is to design a special metamaterial to guide electromagnetic wave around the cloaked region. In May
2006, the first full wave numerical simulations on cylindrical cloaking was carried out by Cummer et al
[5]. A few months later, the first experiment of such a cloak at microwave frequencies was successfully
demonstrated by Schurig et al [20].

Since 2006, there have been many works devoted to a study of using metamaterials [14] to construct
invisibility cloaks of different shapes (e.g., [12, 16, 19, 21, 22]). The fundamental idea is based on the
principle discussed in the Introduction in context of 2D equations - the Maxwell equations are form invariant
under coordinate transformations.

For simplicity, we shall consider only two cloak structures: a cylindrical cloak and a square cloak.

Cylindrical cloak. Following [18], a cylindrical region r ≤ R1 can be cloaked by a concentric cylindrical
annulus R1 ≤ r ≤ R2 through the following coordinate transformation:{

r′(r, θ) = R2−R1
R2

r +R1, 0 ≤ r ≤ R2,

θ′(r, θ) = θ, 0 ≤ θ ≤ 2π,
(2.12)

where the polar coordinate (r, θ) is related to the Cartesian coordinate (x, y) by

r =
√
x2 + y2, θ = tan−1 y

x
. (2.13)

Through some algebraic calculation (details can be seen in [15]), we can obtain the transformation
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matrix

A =
(
∂x′i
∂xj

)
=

 R2−R1
R2

+ R1
r sin2 θ −R1

r sin θ cos θ 0
symmetric R2−R1

R2
+ R1

r cos2 θ 0
0 0 1

 , (2.14)

whose determinant equals

det(A) =
R2 −R1

R2
(
R2 −R1

R2
+
R1

r
) = (

R2 −R1

R2
)2 · r′

r′ −R1
. (2.15)

Furthermore, the relative permittivity in the transformed space can be obtained as

ε′ =

 ε′xx ε′xy 0
ε′yx ε′yy 0
0 0 ε′z

 ,

where

ε′xx =
[
(
R2 −R1

R2
)2 +

R1

r
(2
R2 −R1

R2
+
R1

r
) sin2 θ

]
/det(A),

ε′xy = ε′yx =
[
−R1

r
(2
R2 −R1

R2
+
R1

r
) sin θ cos θ

]
/det(A),

ε′yy =
[
(
R2 −R1

R2
)2 +

R1

r
(2
R2 −R1

R2
+
R1

r
) cos2 θ

]
/det(A),

and ε′z = 1/det(A). The permeability µ′ has the same as permittivity ε′.

Square cloak. The same idea as above can be used to design a square-shaped cloak with inner square
width 2S1 and outer square width 2S2. It can be seen that the coordinate transformation [19]:{

x′(x, y) = xS2−S1
S2

+ S1

y′(x, y) = y(S2−S1
S2

+ S1
x )

mapped the right triangle in the original space into the right-subdomain in the transformed space (see Fig.2).

It is easy to prove that the transformation matrix in this case is

Ar =

 S2−S1
S2

0 0
−yS1

x2
S2−S1
S2

+ S1
x 0

0 0 1

 , (2.16)

which has determinant
det(Ar) =

S2 − S1

S2
(
S2 − S1

S2
+
S1

x
). (2.17)

The relative permittivity in the transformed space can be obtained as [15]:

ε′r =

 (S2−S1
S2

)2 −yS1

x2 · S2−S1
S2

0
symmetric (yS1

x2 )2 + (S2−S1
S2

+ S1
x )2 0

0 0 1

 /det(Ar). (2.18)
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Figure 2: (Left) The original space; (Right) The transformed space.

Corresponding formulas for the upper, left and bottom triangles of the cloak can be similarly obtained

by applying rotation matrix R(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 to the right sub-domain with rotation angles

θ = π/2, π and 3π/2, respectively.

3 DPG Method

The Discontinuous Petrov-Galerkin Method with Optimal Test Functions [7, 23] builds on three crucial
concepts:

• The idea of Petrov-Galerkin method with optimal test functions computed on the fly.

• The element-wise ultraweak variational formulation using discontinuous test functions that makes the
determination of optimal test functions feasible.

• The choice of an optimal test norm that enables correct “mapping properties” and results in uniform
stability for wave propagation, i.e., independent of the wavenumber.

For reader’s convenience, here we review quickly these main points in context of linear acoustics, see [23, 8]
for details.

Least squares and optimal testing. Any well-posed variational problem,{
u ∈ U

b(u, v) = l(v), v ∈ V
(3.19)
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with two Hilbert spaces U, V , sesquilinear form b(u, v) and antilinear form l(v), is equivalent to a linear
operator problem,

Bu = l, B : U → V ′, < Bu, v >V ′×V = b(u, v). (3.20)

What makes variational problems different from other linear problems is that the operator B takes values in
the dual space V ′ equipped with the dual norm,

‖l‖V ′ = sup
v 6=0

|l(v)|
‖v‖V

. (3.21)

Given a finite-dimensional subspace Uh ⊂ U , the least squares method seeks the minimizer of the quadratic
minimum residual problem,

1
2
‖Buh − l‖2V ′ → min

uh∈Uh

. (3.22)

Recalling the notion of the Riesz operator for test space V ,

RV : V → V ′, < RV v, δv >= (v, δv)V (3.23)

and the fact that RV is an isometry, we can reformulate the least squares problem as,

1
2
‖R−1

V (Buh − l)‖2V → min
uh∈Uh

. (3.24)

The corresponding necessary and equivalent3 condition for the minimizer uh takes form of the linear varia-
tional equation:

(R−1
V (Buh − l), R−1

V Bδuh)V = 0, δuh ∈ Uh (3.25)

or, recalling the definition of the Riesz operator,

< (Buh − l), R−1
V Bδuh >= 0, δuh ∈ Uh. (3.26)

Defining trial-to-test operator with the corresponding image identified as the optimal test space Vh,

Uh 3 δuh → vh := R−1
V Bδuh ∈ Vh ⊂ V, (3.27)

we can reinterpret condition (3.26) as a Petrov-Galerkin method,

< (Buh − l), vh >= 0, RV vh = Bδuh, (3.28)

or, returning to variational notation,{
uh ∈ Uh

b(uh, vh) = l(vh), vh ∈ Vh,
(3.29)

3Under the assumption of the well-posedness, the least squares quadratic functional is positive definite.
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where the test functions are obtained by solving an auxiliary variational problem (inverting the Riesz oper-
ator RV ), {

vh ∈ Vh

(vh, δv)V = b(δuh, δv), δv ∈ Vh.
(3.30)

The main points of the Petrov-Galerkin method are:

• The stiffness matrix is always hermitian and positive-definite.

• The method delivers the best approximation error (BAE) in the “energy norm”:

‖u‖E := ‖Bu‖V ′ = sup
v∈V

|b(u, v)|
‖v‖V

. (3.31)

• The energy norm of the discretization error u − uh equals the residual and can be computed without
knowing the exact solution,

‖u− uh‖E = ‖Bu−Buh‖V ′ = ‖l −Buh‖V ′ = ‖R−1
V (l −Buh)‖V . (3.32)

Hence, there is no need for a separate a-posteriori error estimation, the method comes with a built-in
error estimator4.

In fact, we do not have a single method but a family of such, any choice of test norm ‖v‖V results in a
different Petrov-Galerkin approximation. An obvious question to ask is how to select an optimal test norm.
A possible answer comes from the Banach Closed Range Theorem. Under the assumption that the dual
operator is injective, if we define the test norm as:

‖v‖V := sup
u∈U

|b(u, v)|
‖u‖U

, (3.33)

the corresponding energy norm coincides with the original norm in U ,

‖u‖E = ‖u‖U . (3.34)

We deliver the best approximation error in the norm of our choice.

Ultraweak variational formulation and the DPG variational formulation. We review now the main
ideas of the DPG method of C. Bottaso, P. Pausin, S. Micheletti, and R. Sacco [3, 4].

We solve the linear acoustics equations:{
iωu+∇p = 0

iωp+ divu = 0
(3.35)

4Note the connection with implicit a-posteriori error estimation techniques aiming at element-wise approximation of inverse
Riesz operator [1].
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in a bounded domian Ω, accompanied by, e.g. hard boundary condition:

un = u · n = g on Γ = ∂Ω. (3.36)

We denote Ωh for a disjoint partition of Ω into open elements K such as Ω̄ = ∪K∈Ωh
K̄, see Fig. 3.

Figure 3: A FE mesh with elements K, edges e, skeleton Γh and internal skeleton Γ0
h.

For any element K, multiplying the equations with test functions v ∈ H(div,K), q ∈ H1(K) and
integrating over the element K, we obtain

iω

∫
K
u · v +

∫
K
∇p · v = 0

iω

∫
K
p q +

∫
K

divu q = 0.
(3.37)

We integrate by parts (relax) both5 equations:
iω

∫
K
u · v −

∫
K
p · divv +

∫
∂K

pvn = 0

iω

∫
K
p q −

∫
K
u · ∇q +

∫
∂K

un q sgn(n) = 0,
(3.38)

where un = u · ne and

sgn(n) =

{
1 if n = ne

−1 if n = −ne.
(3.39)

Finally, contrary to the concept of numerical flux, we declare both traces and fluxes to be independent
unknowns: 

iω

∫
K
u · v −

∫
K
p · divv +

∫
∂K

p̂vn = 0

iω

∫
K
p q −

∫
K
u · ∇q +

∫
∂K

ûn q sgn(n) = 0.
(3.40)

5Hence the name of the ultra-weak variational formulation.
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We use BCs to eliminate known fluxes
iω

∫
K
u · v −

∫
K
p · divv +

∫
∂K

p̂vn = 0

iω

∫
K
pq −

∫
K
u · ∇q +

∫
∂K−Γ

ûn q sgn(n) =
∫
∂K∩Γ

g q,
(3.41)

sum up over all elements, and introduce the standard DG notation: iω(u,v)Ωh
− (p, divv)Ωh

+ < p̂, vn >Γh
= 0

iω(p, q)Ωh
− (u,∇q)Ωh

+ < ûn, q >Γ0
h

=< g, q >Γ,
(3.42)

where we denote (r, s)Ωh
:=
∑

K∈Ωh
(r, s)K , which reflects the element by element calculations. Further-

more, the precise functional setting is as follows:

Γh :=
⋃
K ∂K (skeleton),

Γ0
h := Γh − ∂Ω (internal skeleton),

H1/2(Γh) := {q|Γh
: q ∈ H1(Ω)} with the minimum extension norm:

‖q‖H1/2(Γh) := inf{‖Q‖H1 : Q|Γh
= q},

H̃−1/2(Γ0
h) := {vn|Γh

: v ∈H0(div,Ω)} with the minimum extension norm:

‖vn‖ eH−1/2(Γ0
h)

:= inf{‖v‖H0(div,Ω) : v · n|Γ0
h

= σn}.

(3.43)

We have two group variables:
Solution U = (u, p, ûn, p̂):

u1, u2, p ∈ L2(Ωh),
ûn ∈ H̃−1/2(Γ0

h),
p̂ ∈ H1/2(Γh),

(3.44)

and test function V = (v, q):
v ∈H(div,Ωh),
q ∈ H1(Ωh).

(3.45)

The sesquilinear form can be written as:

b(U ,V ) = −(u, iωv +∇q)Ωh
− (p, iωq + divv)Ωh

+ < ûn, q >Γ0
h

+ < p̂, vn >Γh
.

(3.46)

There are two main punchlines:

• Local invertibility of Riesz operator. Due to the use of “broken” Sobolev spaces (discontinuous test
functions), the Riesz operator is inverted elementwise. Given any trial shape functions, we compute
the corresponding optimal test functions on the fly.
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• Approximate optimal test functions. The locally determined optimal test functions still need to
be approximated. This is done using standard Bubnov-Galerkin method and an enriched space. If
polynomials of order p are used to approximate the unknown velocity and pressure, the approximate
optimal test functions are determined using polynomials of order: p+ ∆p, where ∆p ≥ 1.

Requesting the L2-norm for velocity u and pressure p, and some unknown (at this point yet) norms to define
the minimum extension norms for traces and fluxes,

‖(u, p, ûn, p̂)‖2U = ‖u‖2L2 + ‖p‖2L2 + ‖ûn‖2? + ‖p̂‖2?, (3.47)

we can compute the optimal test norm (3.33):

‖(v, q)‖2opt = ‖iωv +∇q‖2Ωh
+ ‖iωq + divv‖2Ωh

+ supûn,p̂
|<ûn,q>+<p̂,vn>|

(‖ûn‖2?+‖p̂2?)1/2 .
(3.48)

The terms involving traces are unfortunately non-local6, which makes the optimal test norm unsuitable for
computations.

The following quasi-optimal test norm was proposed in [23, 8]:

‖(v, q)‖2opt = ‖iωv +∇q‖2Ωh
+ ‖iωq + divv‖2Ωh

+ ‖v‖2 + ‖q‖2, (3.49)

where ‖ · ‖ denotes the L2-norm on Ω. With the same norm used to define the minimum energy extension
norms for traces and fluxes, it was shown7 in [8] that the quasi-optimal test norm is equivalent to the optimal
test norm uniformly in wave number k and mesh parameters: element size h and polynomial order p.

Consequently, we have the robust stability in the desired norm:(
‖u− uh‖2 + ‖p− ph‖2 + ‖ûn − ûn,h‖2 + ‖p̂− p̂h‖2

) 1
2

. ‖(u, p, ûn, p̂)− (uh, ph, ûn,h, p̂h)‖E

= BAE of (u, p, ûn, p̂) in the energy norm

. BAE of (u, p, ûn, p̂) in the desired norm.

(3.50)

The ultimate, pollution-free DPG method for wave propagation problems. Despite the uniform stabil-
ity, the result above does not prove that DPG is a pollution free method in multidimensions. This is because
the best approximation error term includes the best approximation error for traces and fluxes which is not
pollution free. In 1D, fluxes and traces are just numbers, so their best approximation error (in any norm) is
always zero.

6For regular functions, they can be interpreted as jumps in vn and q on Γh.
7Under standard technical assumptions.
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The method proposed and analyzed in [9] is a slight variation of the presented method, and it is obtained
formally by rescaling the L2-term in (3.49) with a small constant α,

‖(v, q)‖2opt = ‖iωv +∇q‖2Ωh
+ ‖iωq + divv‖2Ωh

+ α
(
‖v‖2 + ‖q‖2

)
(3.51)

and passing with α → 0. The corresponding method is pollution free, see [9] for the proof. In practice, we
use the test norm above with a small value of α limited by round off error only.

4 DPG Method for Cloaking Problems

We consider the 2D acoustics/Maxwell problem discussed in the previous section:
iω

∫
Ωh

u · v −
∫

Ωh

p · divv +
∫
∂Ωh

p̂vn = 0

iω

∫
Ωh

pq −
∫

Ωh

u · ∇q +
∫
∂Ωh−Γ

ûn q sgn(n) =
∫
∂Ωh∩Γ

g q.
(4.52)

The quasi-optimal test inner product discussed in Section 3 has the form:∫
Ωh

(iωµq+divv)(iωµδq + divδv)dx+
∫

Ωh

(iωεv+∇q)(iωεδv +∇δq)dx+α
(∫

Ωh

µqδq dx+
∫

Ωh

εvδv dx

)
.

(4.53)
As usual, the differential operators are understood elementwise (as indicated by integration over Ωh). Note
that we have used ε and µ to define the L2 weighted norms.

The cloaking stretching x = x(ξ) results in the test inner product in the ξ plane,∫
bΩh

(iωµ̂q + d̂ivv̂)(iωµ̂δq + d̂ivδ̂v) J−1dξ +
∫

bΩh

∂ξk
∂xi

∂ξl
∂xi

J(iωε̂knv̂n +
∂q̂

∂ξk
)(iωε̂lmδ̂vm +

∂δ̂q

∂ξl
) dξ

+α
(∫

bΩh

µ̂q̂δ̂q dξ +
∫

bΩh

ε̂nlv̂nδ̂vl dξ

)
,

(4.54)
where

µ̂ = µJ, ε̂nl = ε
∂xi
∂ξn

∂xi
∂ξl

J−1, (4.55)

and also the metric in the second term has changed with the new metric tensor defined by:

∂ξk
∂xi

∂ξl
∂xi

J. (4.56)

Thus, if we believe in the quasi-optimal test norm before the stretching, the formula above defines the right
test norm to be used for the cloaking problem.

4.1 Basic Numerical Experiments

In this section, we will use our DPG method to solve two cloaking problems.
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Cylindrical cloak We use the following data:

wave number: k = 20.958
domain: Ω = (−1.5, 1.5)2

cloak dimensions: R1 = 0.15, R2 = 0.3
material constants: ε = 1, µ = 1.

Consistent with discussion in Section 2, we use the hard boundary condition along the inner radius of the
cloak. Along the outer boundary of the domain, we use impedance boundary condition,

p− un = g (4.57)

with data g driving the problem and determined using the very plane wave that we simulate. Impedance
boundary condition (4.57) defines a relation between traces p̂ and fluxes ûn on the exterior boundary Γext.
We have implemented it using Lagrange multipliers. More precisely, we enforce the following constraints
on the unknown traces and fluxes, ∫

Γext

(p− un)φ =
∫

Γext

gφ (4.58)

for every test function φ coming from the flux space. With equal order of approximation for traces and
fluxes being used in the simulations, the condition is equivalent to a pointwise condition,

p− un = Phg on Γext, (4.59)

where Ph is the L2-projection on the flux space on Γext.

We use the finite element mesh displayed in Fig. 4 with roughly four bilinear elements per wavelength.
The color bar on the right-hand side represents order of H1-conforming elements, in this case a uniform
order p = 2. Consequently, the order of L2-conforming elements 8 used to discretize “field variables”:
pressure p and velocity components u1, u2 is equal one (bilinear elements).

The shape of finite elements reflects transfinite parametrizations used to model the geometry (see [6]
for details). Traces are discretized with continuous (and hence H1/2-conforming) elements, and fluxes are
approximated with quadratic discontinues elements. The optimal test functions are determined using the
enriched space with ∆p = 2. More precisely,

q, δq ∈ Pp+∆p ⊗ Pp+∆p, v, δv ∈ (Pp+∆p ⊗ Pp+∆p−1)× (Pp+∆p−1 ⊗ Pp+∆p)

with p = 2 and ∆p = 2. We have used α = 1.d− 5. Using α = 1 gives only slightly bigger L2-errors.

The real part of the pressure, shown in Fig. 5, differs very little (in an eye-ball norm...) from the exact
solution presented earlier in Fig. 1. The only visible distorsions are attributed to the use of non-affine
elements and resulting non-polynomial shape functions that affect the best approximation error.

8The code supports the whole exact sequence, i.e. H1-,H(curl)-, H(div)- and L2-conforming elements, with the order dictated
by the exact sequence for Nédélec’s triangles and quads of the first type.
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Figure 4: Cylindrical cloak in 2D: The FE mesh.

Square cloak. We use the same data as for the cylindrical cloak:

wave number: k = 20.958
domain: Ω = (−1.5, 1.5)2

cloak dimensions: S1 = 0.15, S2 = 0.3
material constants: ε = 1, µ = 1.

We also use the same mesh with roughly four bilinear elements per wavelength. Fig.6 presents exact and
approximate solutions for the problem. The relative L2-error for the field variables (u, p) is 23.77 percent.

4.2 Experiments with h-Adaptivity

To reduce the relative errors, we further developed the h-adaptivity for our DPG method.

We first tested the “square cloak” problem to see how this works. Our initial mesh has rougly four
bilinear elements per wavelength, and our h-adaptivity has produced essentially uniform refinements. The
results show O(h2) convergence rate and the ratio of L2 and energy errors stays bounded, which are consis-
tent with our recent theoretical result [9]. Detailed results are presented in Table 1, where DOFs denote the
total Degrees of Freedoms.

Similar results have been observed for the “cylindrical cloak” problem, details are presented in Table 2.
The obtained optimal mesh after the fourth refinement is shown in Fig. 7. We also present the numerical and
analytical solutions, and the error in Fig. 7.
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Figure 5: Cylindrical cloak in 2D: The real part of the computed pressure, range: (-1.22,1.31).

Table 1: The “square cloak”: History of h-refinements.
Mesh DOFs Energy error L2 error L2 relative error (in %) L2/energy error
1 2304 1.0922923104 0.3963140791 9.2788672579 0.3628278578
2 11064 0.3425376653 0.1002458536 2.3470467350 0.2926564398
3 45064 9.1168360988E-02 2.5464311229E-02 0.5961935165 0.2793108371
4 178512 2.3317027718E-02 6.6201235622E-03 0.1549963284 0.2839179865

4.3 Experiments with Pollution Errors

Finally, to demonstrate that our DPG method exhibits no dispersion error as proved in [9], we solved our
cloak problems with different wave numbers and different mesh sizes (but keep kh fixed). Obtained numer-
ical results are presented in Table 3, which clearly illustrates lack of pollution errors.

Table 2: The “cylindrical cloak”: History of h-refinements.
Mesh DOFs Energy error L2 error L2 relative error (in %) L2/energy error
1 2304 1.4105574668 0.4205521701 9.8782505902 0.2981460734
2 9348 0.4918732768 0.1359146653 3.1924660088 0.2763204910
3 12572 0.4434205623 0.1076659299 2.5289206723 0.2428077068
4 14282 0.3988570480 0.1057855040 2.4848211457 0.2652215990
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Figure 6: Cylindrical cloak in 2D: The real part of computed pressure. Left: the exact solution, range:
(-1,1); Right: the approximate one, range: (-1.24,1.29).

Table 3: Experiments with pollution errors for both cloaking problems.
square cloak cylindrical cloak

Wavenumbers DOFs L2 relative error (in %) L2 relative error (in %)
0.52396E+01 4800 9.27887 9.87825
0.10479E+02 18960 9.32685 9.68599
0.20958E+02 75360 9.39416 10.07621
0.41917E+02 300480 9.49858 10.19268

5 Conclusions

In this paper we extend our recently developed Discontinuous Galerkin Method (DPG) to the cloaking
problems. Extensive numerical experiments demonstrate that the DPG method is indeed free of pollution
error and quite efficient in solving this type of problems.
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Figure 7: Cylindrical cloak after 4 refinements. Top Left: The mesh; Top Right: The real part of computed
pressure, range: (-1.01, 1.05); Bottom Left: the exact solution, range: (-1,1); Bottom Right: the error
approximate one, range: (-0.057,0.037).
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